The following bibliography lists papers related to DMT’s Cloud Condensation Nuclei Counter (CCN Counter). Papers are grouped by topic; clicking on a topic below will bring you to that section of the bibliography. 

Measurement Methodology
Ambient Measurements: Activation Properties of Organics or Dust
Ground-based Ambient Measurements: Urban, Non-Urban, or Mixed
Airborne Ambient Measurements
Laboratory Studies: Chamber Studies


Measurement Methodology

Kuwata, M. and Kondo, Y.(2009) Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters, Atmos. Chem. Phys., 9, 5921-5932
Lance, S., J. Medina, J. N. Smith, and A. Nenes (2006), Mapping the operation of the DMT Continuous Flow CCN Counter, Aerosol Science and Technology, 40, 242– 254, doi:10.1080/02786820500543290. 
Moore, R.H. and A. Nenes (2009), Scanning Flow CCN Analysis—A Method for Fast Measurements of CCN Spectra, Aerosol Science and Technology, 43:1192–1207, 2009. 
Padró, L.T., A. Asa-Awuku, R. Morrison, and A. Nenes (2007), Inferring thermodynamic properties from CCN activation experiments: single-component and binary aerosols, Atmos. Chem. Phys., 7, 5263–5274. 
Petters, M. D. and Kreidenweis, S. M (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971. 
Petters, Markus D., Prenni, Anthony J., Kreidenweis, Sonia M. and DeMott, Paul J. (2007) On Measuring the Critical Diameter of Cloud Condensation Nuclei Using Mobility Selected Aerosol, Aerosol Science and Technology,41:10,907 — 913
Petters, M. D. and S. M. Kreidenweis (2008), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility, Atmos. Chem. Phys., 8, 6273–6279. 
Roberts, G. C. and Nenes, A. (2005), A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements, Aerosol Science and Technology, 39:3, 206 – 221
Rose, D, S. S. Gunthe, E. Mikhailov, G. P. Frank, U. Dusek, M. O. Andreae, and U. Pöschl (2008), Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179
Ruehl, C. R., P. Y. Chuang, and A. Nenes (2008), How quickly do cloud droplets form on atmospheric particles? Atmos. Chem. Phys., 8, 1043–1055. 


Ambient Measurements: Activation Properties of Organics

Asa-Awuku, A., A. P. Sullivan, C. J. Hennigan, R. J. Weber, and A. Nenes (2008), Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol, Atmos. Chem. Phys., 8, 799–812. 
Asa-Awuku, A., Engelhart, G. J., Lee, B. H., Pandis, S. N., and Nenes, A. (2009) Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795-812. 
Hings, S. S., W. C. Wrobel1, E. S. Cross, D. R. Worsnop, P. Davidovits, and T. B. Onasch (2008), CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles, Atmos. Chem. Phys., 8, 3735–3748
King, S. M., T. Rosenoern, J. E. Shilling, Q. Chen, and S. T. Martin (2007), Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate, Geophys. Res. Lett., 34, L24806, doi:10.1029/2007GL030390. 
King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T. (2009) Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959-2971 
Moore, R. H., E. D. Ingall, A. Sorooshian, and A. Nenes (2008), Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity, Geophys. Res. Lett., 35, L07801, doi:10.1029/2008GL033350. 
Petters, M. D., A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, and P. J. Ziemann (2006), Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol, Geophys. Res. Lett., 33, L24806, doi:10.1029/2006GL027249. 
Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F. (2009) Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol – Part 2: Theoretical approaches, Atmos. Chem. Phys., 9, 3999-4009. 
Petters, M. D., S. M. Kreidenweis, A. J. Prenni, R. C. Sullivan, C. M. Carrico, K. A. Koehler, and P. J. Ziemann (2009), Role of molecular size in cloud droplet activation, Geophys. Res. Lett., 36, L22801, doi:10.1029/2009GL040131. 
Poulain, 10: 4795-4807, 2010. L., Z. Wu et al. “Towards Closing the Gap between Hygroscopic Growth and CCN Activation for Secondary Organic Aerosols: Part 3: Influence of the Chemical Composition on the Hygroscopic Properties and Volatile Fractions of Aerosols.” Atmospheric Chemistry and Physics, 10: 3775-3785, 2010. 


Ambient Measurements: Activation Properties of Dust

Gibson, E.R., K.M., Gierlus, P.K. Hudson,. and V.H. Grassian, (2007) Generation of Internally Mixed Insoluble and Soluble Aerosol Particles to Investigate the Impact of Atmospheric Aging and Heterogeneous Processing on the CCN Activity of Mineral Dust Aerosol, Aerosol Science and Technology,41:10,914 — 924
Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, A. J. Prenni, and M. D. Petters (2007), Potential impact of Owens (dry) Lake dust on warm and cold cloud formation, J. Geophys. Res., 112, D12210, doi:10.1029/2007JD008413. 
Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, M. D. Petters, A. J. Prenni, and C. M. Carrico (2009), Hygroscopicity and cloud droplet activation of mineral dust aerosol, Geophys. Res. Lett., 36, L08805, doi:10.1029/2009GL037348. 
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.(2009) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9, 3303-3316.


Ambient Measurements: Ground-based, Urban

Cubison, M. J., Alfarra, M. R., Allan, J., Bower, K. N., Coe, H., McFiggans, G. B., Whitehead, J. D., Williams, P. I., Zhang, Q., Jimenez, J. L., Hopkins, J., and Lee, J. (2006), The characterisation of pollution aerosol in a changing photochemical environment, Atmos. Chem. Phys., 6, 5573-5588. 
Cubison, M. J., B. Ervens, G. Feingold, K. S. Docherty, I. M. Ulbrich, L. Shields, K. Prather, S. Hering, and J. L. Jimenez (2008), The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties, Atmos. Chem. Phys., 8, 5649–5667. 
Kuwata, M., Y. Kondo, M. Mochida, N. Takegawa, and K. Kawamura (2007), Dependence of CCN activity of less volatile particles on the amount of coating observed in Tokyo, J. Geophys. Res., 112, D11207, doi:10.1029/2006JD007758. 
Kuwata, M., and Y. Kondo (2008), Dependence of size-resolved CCN spectra on the mixing state of nonvolatile cores observed in Tokyo, J. Geophys. Res., 113, D19202, doi:10.1029/2007JD009761. 
Kuwata, M., Y. Kondo, and N. Takegawa (2009), Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo, J. Geophys. Res., 114, D20202, doi:10.1029/2009JD012086. 
Mochida, M., M. Kuwata, T. Miyakawa, N. Takegawa, K. Kawamura, and Y. Kondo (2006), Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo, J. Geophys. Res., 111, D23204, doi:10.1029/2005JD006980. 
Padro, Luz, Daniel Tkacik et al. “Investigation of Cloud Condensation Nuclei Properties and Droplet Growth Kinetics of Water-Soluable Aerosol Fraction in Mexico City.” J. Geophys. Res., 115: D09204, 2010. 
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and Pöschl, U.(2008) Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys. Discuss., 8, 17343-17392.
Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu, Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S. S., Rose, D., Su, H. and Poschl, U.(2009) Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China, Journal of Geophysical Research-Atmospheres, 114, 2009. 
Yum, S. S., G. Roberts, J. H. Kim, K. Song, and D. Kim (2007), Submicron aerosol size distributions and cloud condensation nuclei concentrations measured at Gosan, Korea, during the Atmospheric Brown Clouds–East Asian Regional Experiment 2005, J. Geophys. Res.


Ambient Measurements: Ground-based, Non-Urban

Andreae, M. O.(2009) Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543-556. 
Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos, N.: Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 7053-7066. 
Dusek, U., G. P. Frank, L. Hildebrandt et al. (2006). Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312:1375–1378. 
Ervens, B., M. Cubison, E. Andrews, G. Feingold, J. A. Ogren, J. L. Jimenez, P. DeCarlo, and A. Nenes (2007), Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity, J. Geophys. Res., 112, D10S32, doi:10.1029/2006JD007426. 
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys., 9, 7551-7575.
Irwin, M., N. Robinson, J. D. Allan, H. Coe1, and G. McFiggans. Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3. Atmos. Chem. Phys. Discuss., 11, 3117–3159, 2011. doi:10.5194/acpd-11-3117-2011. 
Michihiro Mochida,Chiharu Nishita-Hara, Hiroshi Furutani, Yuzo Miyazaki, Jinyoung Jung, Kimitaka Kawamura, and Mitsuo Uematsu. Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific. J. Geophys. Research 116 D06204, doi:10.1029/2010JD014759, 2011.
Ruehl, C. R., P. Y. Chuang, and A. Nenes (2009), Distinct CCN activation kinetics above the marine boundary layer along the California coast, Geophys. Res. Lett., 36, L15814, doi:10.1029/2009GL038839. 
Wang, J. (2007), Effects of spatial and temporal variations in aerosol properties on mean cloud albedo, J. Geophys. Res., 112, D16201, doi:10.1029/2007JD008565.


Ambient Measurements: Ground-based, Mixed

Allan, J. D., D. Baumgardner, G. B. Raga et al. (2007). Clouds and aerosols in Puerto Rico: A new evaluation. Atmos. Chem. Phys. Discuss. 7:12,573–12,616. 
Ervens, B., M.J. Cubison et al. CCN Predictions using Simplified Assumptions of Organic Aerosol Composition and Mixing State: a Synthesis from Six Different Locations. Atmospheric Chemistry and Physics, 10: 4795-4807, 2010. 
Kuwata, M., Kondo, Y., Miyazaki, Y., Komazaki, Y., Kim, J. H., Yum, S. S., Tanimoto, H., and Matsueda, H. (2008) Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005, Atmos. Chem. Phys., 8, 2933-2948
Medina, J., A. Nenes, R.-E. P. Sotiropoulou, L. D. Cottrell, L. D. Ziemba, P. J. Beckman, and R. J. Griffin (2007), Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size-resolved composition, J. Geophys. Res., 112, D10S31, doi:10.1029/2006JD007588. 
Quinn, P.K., T. S. Bates, D. J. Coffman, and D. S. Covert (2008), Influence of particle size and chemistry on the cloud nucleating properties of aerosols, Atmos. Chem. Phys., 8, 1029–1042.


Ambient Measurements: Airborne

Andreae, M .O., and D. Rosenfeld. (2008). Aerosol–cloud–precipitation interactions. Part 1: The nature and sources of cloud active aerosols. Earth Sci. Rev. 89 (1-2):13–41. 
Hegg, D.A., D.S. Covert, et al. “The Contribution of Anthropogenic Aerosols to Aerosol Light-Scattering and CCN Activity in the California Coastal Zone.” Atmospheric Chemistry and Physics Discussions, 10: 11483-11511, 2010. 
Lance, S., et al. (2009), Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), J. Geophys. Res., 114, D00F15, doi:10.1029/2008JD011699. 
Roberts, G., G. Mauger, O. Hadley, and V. Ramanathan (2006), North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei, J. Geophys. Res., 111, D13205, doi:10.1029/2005JD006661.
Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Dunlea, E. J., Roberts, G. C., Tomlinson, J. M., Collins, D. R., Howell, S. G., Kapustin, V. N., McNaughton, C. S., and Zhou, J.: Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during during MILAGRO/INTEX-B. Atmos. Chem. Phys.9, 6727-6742. 
Sorooshian, A, S. M. Murphy, S. Hersey, H. Gates, L. T. Padro, A. Nenes, F. J. Brechtel, H. Jonsson, R. C. Flagan, and J. H. Seinfeld (2008), Comprehensive airborne characterization of aerosol from a major bovine source, Atmos. Chem. Phys., 8, 5489–5520. 
Stith, J.L., V. Ramanathan, W. A. Cooper, G. Roberts, P. J. DeMott, G. Carmichael, C. D. Hatch, B. Adhikary, C. H.Twohy, D. C. Rogers, D. Baumgardner, A. J. Prenni, T. Campos, RuShan Gao, J. Anderson, Y. Feng, 2008: Cross-Pacific Transport of Asian Dust-Mode Particles, Soot and Cloud Active Nuclei, J. Geophys. Res., 114, D05207, doi:10.1029/2008JD010924. 
Wang, J., Y.-N. Lee, P. H. Daum, J. Jayne, and M. L. Alexander (2008), Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect, Atmos. Chem. Phys., 8, 6325–6339. 


Laboratory Studies: Chamber Studies

Duplissy, J., et al. (2008), Cloud forming potential of secondary organic aerosol under near atmospheric conditions, Geophys. Res. Lett., 35, L03818, doi:10.1029/2007GL031075.
Engelhart, G. J., A. Asa-Awuku, A. Nenes, and S. N. Pandis (2008), CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937–3949. 
Henning, S., H. Wex et al. “Soluble Mass, Hygroscopic Growth, and Droplet Activation of Coated Soot Particles During LACIS Experiment in November (LExNo)." Journal of Geophysical Research, 115: D11206, 2010. 
Mentel, Th. F., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Dal Maso, M., Fisseha, R., Hohaus, Th., Spahn, H., Uerlings, R., Wegener, R., Griffiths, P. T., Dinar, E., Rudich, Y., and Wahner, A.(2009) Photochemical production of aerosols from real plant emissions, Atmos. Chem. Phys., 9, 4387-4406. 
Snider, J.R., H. Wex et al. “Intercomparison of Cloud Condensation Nuclei and Hygroscopic Fraction Measurements: Coated Soot Particles Investigated During the LACIS Experiment in November (LExNo) Campaign.” Journal of Geophysical Research, 115: D11205, 2010. 
Straatman, F., M.Bilde et al. “Examination of Laboratory-Generated Coated Soot Particles: An Overview of the LACIS Experiment in November (LExNo) Campaign.” J. Geophys. Res., 115: D11203, 2010. 
Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann (2007), Cloud droplet activation of secondary organic aerosol, J. Geophys. Res., 112, D10223, doi:10.1029/2006JD007963. 
Wex, H., Stratmann, F., Hennig, T., Hartmann, S., Niedermeier, D., Nilsson, E., Ocskay, R., Rose, D., Salma, I., Ziese, M. (2008) Connecting hygroscopic growth at high humidities to cloud activation for different particle types, Environmental Research Letters, 3, 035004, doi:10.1088/1748-9326/3/3/035004, 2008. 
Wex, H., Petters, M. D., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F. (2009) Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements, Atmos. Chem. Phys., 9, 3987-3997.